
18 The Delphi Magazine Issue 57

Beating The System: Alpha
Blending In Windows 2000
Clearly Minty!
by Dave Jewell

Idon’t know how long you’ve been
working with Windows, but I’ve

been at it ever since version 1.0.
There’s one particular program-
ming experience which will always
stick in my mind, and this goes
back to the days when EGA cards
(Enhanced Graphics Adapter)
ruled the roost. In case you’re not
as long in the tooth as me, suffice it
to say that an EGA card gave you a
princely resolution of 640 by 350
pixels in no less than sixteen glori-
ous colours. And if you think that’s
bad, you really wouldn’t want to
hear about the predecessor to the
EGA card!

But I digress. My memorable pro-
gramming experience happened
over 15 years ago when I was
debugging some long-forgotten
Windows application using a very
crude (by today’s standards)
kernel mode debugger. The pro-
gram being debugged appeared on
the main monitor, whereas the
text-mode debugger had a mono-
chrome monitor all to itself, where
you entered cryptic one-character
commands followed by a string of
hexadecimal gibberish. I can’t
remember exactly what I did
wrong, but somehow I must have
entered something that contained
even more gibberish than the
debugger was expecting. When I
hit the G key to run the program,
something wonderful happened.

At first, everything looked
normal, until the moment when I
clicked the mouse on a menu bar
item. Instead of a drop-down menu
appearing in the normal fashion, I
suddenly saw a beautiful translu-
cent menu appear, with the previ-
ous screen contents tastefully
dimmed behind it. My jaw crashed
to the floor as I moved the mouse
around my magical menu, trans-
fixed in wonder (come on, give me

a break, this was 1985!). I don’t
know how or why it happened, but
somehow I managed to get that
ancient EGA card into a mode
where it was layering the popup
menu on top of the existing screen
content. It lasted for all of thirty
seconds before Windows disap-
peared up its own rear end and I
found myself giving the keyboard
the usual three-fingered salute. I
was never able to reproduce the
incident, and it left me a broken
man. I had seen paradise, and
could never regain it.

Paradise Regained
Until now, that is! One of the joys of
Windows 2000 is the ability to
create application windows that
are translucent, using alpha blend-
ing. If you’re a dedicated API
watcher, you may have noticed
that Microsoft added some basic
alpha blending code to Windows
98 through the new AlphaBlend call.
However, neither Windows 95 nor
Windows 98 contains operating
system support for the creation of
translucent windows.

Before proceeding, let’s be very
clear about our terminology. By
translucent I’m talking about a
window which is partially opaque,
allowing a somewhat dimmed ver-
sion of the background screen con-
tents to show through, just like a
piece of coloured cellophane, or
whatever. A transparent window,
on the other hand, has zero opac-
ity. It has no effect on the visual
appearance of whatever is behind,
so it’s effectively invisible; or, at
least, the transparent parts of it
are!

Under Windows 95/98, it’s possi-
ble to create a window which
appears to be partially translucent
or partially transparent, but the
runtime overheads in doing this

are often very high. For example,
you can easily use SetWindowRgn to
create a non-rectangular window,
but as you move such a window
around the screen, the operating
system has to do a lot of work in
calculating appropriate update
regions for each of the underlying
windows. Similarly, it’s possible to
create translucent windows under
Windows 95/98, but the runtime
performance is less than spectacu-
lar, because the application has to
take responsibility for figuring out
what’s ‘underneath’ it, dimming
the bitmap, and updating every-
thing in real time as the window
moves around the screen.

With the introduction of Win-
dows 2000, all this has changed
through the introduction of a new
concept called layering. This
enables the operating system to
take responsibility for buffering
the contents of the window behind
the current window. If you find that
hard to understand, let’s put it in
concrete terms. Suppose your pro-
gram has a window, A, in front of
another application’s window, B.
Under Windows 95/98, if you move
A so as to expose more of B, or
close A altogether, Windows has to
send a message to B telling it to
repaint the newly uncovered area.
This is the traditional functionality
that most Windows developers are
familiar with. However, under Win-
dows 2000, you can make your
window, A, into a layered window.
This causes the operating system
to take a ‘snapshot’ of the screen
behind A. Anytime that the back-
ground behind A needs to be
repainted, Windows 2000 can
simply do the job itself using the
contents of its off-screen buffer.
This is obviously a lot faster than
asking the application to do it and
drastically reduces the flicker

May 2000 The Delphi Magazine 19

which typically characterises non-
rectangular windows, or attempts
to get translucency, under Win-
dows 95/98.

This explanation is somewhat
simplistic. If you think about it,
Windows also has to take a snap-
shot of the layered window in its
fully opaque state. There are thus
two off-screen bitmaps: the image
of the window and the image of
whatever is behind the window.
These are combined together
using alpha blending to create the
translucency effect.

Layering is applicable not only
to translucency, but also to anima-
tion effects. Whenever you’re
doing anything that’s going to
involve much updating of the
window(s) behind your applica-
tion window, then it makes sense
to use layering.

Translucent
Application Windows
OK, enough theory, let’s roll up our
sleeves and have some fun. Before
we can make an ordinary applica-
tion window translucent, we have
to tell Windows that it’s a layered
window. This is done using a new
extended window style, WS_EX_
LAYERED. From the viewpoint of the
VCL and Delphi programming, you
could set this style bit immediately

before the window is created by
overriding the CreateParams
routine, as shown in Listing 1.

This will work, but it’s unneces-
sary. There’s no need to override
CreateParams simply to set this bit
because, unlike some other style
bits, Windows will happily allow
you to alter the style bit after the
window has been created. A sim-
pler approach is to use the Get-
WindowLong and SetWindowLong rou-
tines to massage the style bit as
and when needed. If you try this
out with a bare-bones Delphi pro-
gram, you might be disappointed
to see that your form doesn’t
appear at all! That’s because we’ve
told Windows that the form is a
layered window, but we haven’t
specified the required opacity or
transparency characteristics.

The missing piece of the jigsaw
is a new routine called SetLayered-
WindowAttributes. Not surprisingly,
the function prototype for this rou-
tine hasn’t made it into Delphi yet
(not even Delphi 5) but Listing 2 is
one I prepared earlier.

As you can see, this routine lives
in the USER32 library. This call will
let you set opacity or transparency
information for the layered
window specified by the Wnd
handle. There are two possible
values that can be passed to

the dwFlags parameter, as shown
below:

// LWA constants for
// SetLayeredWindowAttributes
lwa_ColorKey = 1;
lwa_Alpha = 2;

You pass a value of lwa_ColorKey to
set the colour key (transparency)
attribute, or you can pass
lwa_Alpha to set the translucency
(opacity) attribute. In the former
case, the information is passed in
the ColorRef parameter, and in the
latter case through bAlpha.

Since I’ve been waxing lyrical
about translucency, let’s deal with
that first. As you can see, bAlpha is
a byte, allowing us to specify an
opacity value that varies from 0 to
255. A value of 0 means that the
window is totally non-opaque or,
to put it another way, is com-
pletely transparent! If you use an
opacity value of zero, then the
window will be totally invisible. On
the other hand, a value of 255
means that the window is totally
opaque, and looks just like a
normal window.

The interesting stuff, of course,
lies somewhere between. Listing 3
shows the complete source for a
tiny Delphi program which allows
you to change its opacity on the
fly. This is done through an ordi-
nary slider control which calls
SetLayeredWindowAttributes every
time that its position is changed.
You can see the result of running
this program in Figure 1, as the
slider moves over to the right, the
opacity is decreased until the form

procedure TForm1.CreateParams (var Params: TCreateParams);
begin
Inherited CreateParams (Params);
Params.ExStyle := Params.ExStyle or ws_Ex_Layered;

end;

➤ Above: Listing 1 ➤ Below: Listing 2

function SetLayeredWindowAttributes (Wnd: hWnd; crKey: ColorRef; bAlpha: Byte;
dwFlags: DWord): Bool; stdcall; external 'user32.dll';

unit ClearForm;
interface
uses
Windows, Messages, SysUtils, Classes, Graphics,
Controls, Forms, Dialogs, StdCtrls, ComCtrls;

type
TForm1 = class(TForm)
Button1: TButton;
CheckBox1: TCheckBox;
ListBox1: TListBox;
TrackBar1: TTrackBar;
Label1: TLabel;
procedure FormShow(Sender: TObject);
procedure TrackBar1Change(Sender: TObject);

private
public
end;

var
Form1: TForm1;

implementation
{$R *.DFM}

const
// LWA constants for SetLayeredWindowAttributes
lwa_ColorKey = 1;
lwa_Alpha = 2;
// New extended window style for layering
ws_Ex_Layered = $80000;

function SetLayeredWindowAttributes (Wnd: hWnd; crKey:
ColorRef; bAlpha: Byte; dwFlags: DWord): Bool; stdcall;
external 'user32.dll';

procedure TForm1.FormShow(Sender: TObject);
begin
SetWindowLong(Handle, gwl_ExStyle, GetWindowLong(Handle,
gwl_ExStyle) or ws_Ex_Layered);

TrackBar1Change (Sender);
end;
procedure TForm1.TrackBar1Change(Sender: TObject);
begin
SetLayeredWindowAttributes(Handle, 0,
255-TrackBar1.Position, lwa_Alpha);

end;
end.

➤ Listing 3

22 The Delphi Magazine Issue 57

disappears entirely. Beam me up
Scottie!

There are a couple of important
points to note here. Firstly, you will
see from the screenshot that when
a layered window becomes trans-
lucent, all of its child windows
(read that as controls) become
translucent as well. That’s why I
placed a pushbutton, a checkbox
and a listbox on the form: their
only purpose is to illustrate this
point. If you think about it, this is
exactly what we want to happen.
Things would look pretty naff if we
had a nice sexy translucent form,
but the various controls on it
remained resolutely opaque.
Similarly, you will discover that

pressing Alt+PrintScreen
when a layered form is
active will copy a stan-
dard, totally opaque image
of the form to the Windows
clipboard. This is because
the internal screen-
capture code within Win-
dows references the
off-screen, memory based
bitmap of the window
rather than the actual
screen content after alpha
blending.

Another thing you’ll
quickly discover is that
once a window has been
made completely invisi-
ble, it’s gone for good! If

you use the slider to make the
demo program completely invisi-
ble, you will be able to move the
slider back to a more central posi-
tion, provided that you keep the
mouse held down, which (of
course) retains mouse capture.
However, if you let go of the mouse
while the slider is hard over to the
right, you won’t be able to ‘find’ the
window again. This is because the
windowing subsystem looks at the
layered window, sees that it is
completely invisi-
ble and passes all
events straight
through to the
window behind.

Actually, in this
particular case, it
is possible to get
the window back.
A layered top-level
window with zero
opacity still shows
up on the taskbar,
and on the Alt-Tab
switch windows

list of running tasks. If you Alt-Tab
to the window, and hit the Home key,
the window will instantly re-
appear, assuming of course that
the slider control still has the
input focus!

And Transparent
Windows Too!
OK, so much for the lwa_Alpha key,
but what about lwa_ColorKey? If
you specify lwa_ColorKey as the
final parameter to SetLayered-
WindowAttributes, you can then
supply a colour value in the crKey
parameter. This basically tells
Windows what colour you want to
use for transparency. Any pixel in
the window which matches the
specified transparency colour will
be considered transparent. It’s
important to understand that this
is done on a pixel by pixel basis.

To see what I mean by this, take
a look at the code fragment in
Listing 4, for the sake of brevity, I
haven’t bothered to include the
whole program this time. In this
particular case, the SetLayered-
WindowAttributes routine is passed
the value clBlack as the colour
key, with the final parameter set

procedure TForm1.FormShow(Sender: TObject);
begin
SetWindowLong (Handle, gwl_ExStyle, GetWindowLong (Handle, gwl_ExStyle) or
ws_Ex_Layered);

SetLayeredWindowAttributes (Handle, ColorToRGB (clBlack), 0, lwa_ColorKey);
end;
procedure TForm1.FormPaint(Sender: TObject);
var
x, y: Integer;

begin
y := 0;
while y < ClientHeight do begin
x := 0;
while x < ClientWidth do begin
Canvas.Pixels [x, y] := clBlack;
Inc (x, 10);

end;
Inc (y, 10);

end;
end;

➤ Figure 2: Look carefully,
and you will see that this
form contains a rectangular
array of transparent pixels,
somewhat like a sieve.
As you move the form
over the background,
the sieve effect becomes
very obvious, something
that would be very difficult
to achieve under Windows 9x
without big performance
penalties.

➤ Listing 4

➤ Figure 1:
Going, going,
gone! If you
want to create
some snazzy visual effects that
have your application window
appearing and disappearing
like the Marie Celeste, then
Windows 2000 is undoubtedly
the platform for you!

May 2000 The Delphi Magazine 23

to lwa_ColorKey. This tells the oper-
ating system that every black pixel
in the image should be transpar-
ent, and this is exactly what hap-
pens. I’ve added a custom OnPaint
handler for the form which draws a
grid of black pixels all over the
surface of the form.

You can see the resulting effect
in Figure 2. If you look carefully at
this screenshot, you’ll see that the
pixel grid shows white dots where
the window overlays Code
Explorer, grey dots over the gutter
area (which are invisible since the
form itself is grey!) and dark blue
dots over the code editor area.
What’s maybe less obvious is the
effect on the caption bar. If you
look very carefully at the minimise,
maximise and close buttons on the
right hand side of the caption bar,
you’ll notice that all the black
pixels (the actual ‘icons’ on each
button) are showing through as
blue. In other words, transparency
affects the whole window, not just
the client area.

The same is true of hit testing. If I
were to position the mouse so that
its hot-spot exactly coincided with
one of the transparent pixels on
the form, then the cursor would
change to reflect the cursor of the
underlying window, eg an I-Beam
when over the Delphi code editor.
Similarly, clicking the mouse when
it’s exactly over a transparent pixel
would bring the underlying
window to the foreground.

SetLayeredWindowAttributes will
also allow you to OR together the
lwa_Alpha and lwa_ColorKey values,
passing the result as the final
parameter. In this way, you can set
translucency and transparency
characteristics for a single window
in one call.

It’s interesting to note that
Windows 2000 already makes
subtle use of alpha blending tech-
nology itself. If you look carefully at
the mouse cursor, you’ll see that it
has a tasteful looking alpha
blended shadow beneath it. As I
mentioned in connection with
Alt+PrintScreen, the Windows
2000 layering mechanism is invisi-
ble to most screen-capture code
techniques. Consequently, if you
use something like Paint Shop Pro

and specify that you want to take a
screenshot which includes the
mouse cursor, you’ll perhaps be
surprised to discover a very boring
plain-vanilla cursor as part of the
image. Similarly, using Windows
Explorer to drag shell folder items
around looks much nicer under
Windows 2000, because Microsoft
use translucency to layer the drag
image over the background image,
creating a much more refined
effect.

Standing Out
From The Crowd
OK Dave, this is all very well, but
what can I actually do with this
stuff? After all, not that many desk-
top programs are really going to
need a translucent form, are they?
Microsoft do give a few sugges-
tions on what you might do with
this new API feature, such as a
hint/information window that
pops up alongside your work, with-
out obscuring what’s underneath,
but it’s got to be admitted that
opportunities for creating translu-
cent top-level windows are fairly
limited.

There’s one rather nice effect we
can apply to an application
window, and that’s to add a shad-
owed effect. Anyone who’s spent
more than five minutes with the
Windows Help system will know
that the Microsoft help engine
incorporates the ability to display
small popup windows that provide
glossary information on unfamiliar
terms. These windows appear to
offer a sort of shadowed effect, but
it’s really a very cheap affair
because the shadowing is done by
dithering a grey brush with the
underlying window content which

doesn’t give a particularly pleasing
effect. Moreover, these popup
windows don’t move around. The
whole thing is very modal, and the
effect doesn’t represent the use of
a general purpose ‘window
shadowing mechanism’ within the
Windows API.

By making use of translucency
effects in Windows 2000, we can
achieve an effect that’s a great deal
better, as you can see in Figure 3.
With a shadowed application
window like this, you really can
make your program stand out from
the crowd! I’m not advocating that
you should necessarily make all
your application windows look like
this, but if you have a form that’s
got something important to say,
this sort of ‘in your face’ approach
can sometimes be useful and,
besides, you can easily change the
width of the shadow area in order
to vary the ‘strength’ of the effect.

So how did I manage this? By
cheating, of course! The two
shadow areas are made up of two
additional windows that sit along-
side the main application window.
You can see the necessary code in
Listing 5.

The FormCreate routine creates
two new windows, RightShadow and
BotShadow corresponding to the
right and bottom shadow areas.
Both of these forms are created
with a BorderStyle of bsNone since
we just want plain-vanilla
rectangular areas without any
caption bar or border. The shad-
owed form is set up as the owner of
the two shadow areas, but it’s
important to set the Parent prop-
erty Application.MainForm. If we
set it to Self (ie the form for which
we want to create a shadowed

➤ Figure 3: And here's
another cool effect,
courtesy of the
code in Listing 3.
I've used two
small translucent
windows to create
the effect of a real
drop-shadow
accompanying the
top-level application
window.

24 The Delphi Magazine Issue 57

effect) then we’d obviously be
unable to put the two shadowed
areas outside of the form
boundaries.

Things won’t look too impres-
sive if the shadow areas get left
behind when the form is resized or
moved, and consequently it’s nec-
essary to set up an OnResize event
handler and also intercept the Win-
dows wm_WindowPosChanged mes-
sage which tells an application that
a window position has been
altered. Armed with this additional
code, the shadow areas will obedi-
ently follow the form around,
making a very nice effect. Notice
that the WMWindowPosChanged han-
dler checks that at least one of the
shadow forms has been assigned
before calling FormResize. This is
necessary because Windows can
potentially send a wm_Window-
PosChanged message to a freshly
created window, even before the
FormCreate handler has been
called. This would obviously cause
the program to GPF if it started
trying to access the two shadow
forms before they’d been created.

You might also notice that the
bottom shadow is drawn Shadow-
Widthpixels shorter than you might
expect. This is necessary to pre-
vent the two shadow areas from
overlapping one another which
would otherwise create a small box
in the bottom-right corner with a
different opacity to the rest of the
shadow.

In this simple program, I’ve used
a default shadow width of 7 and a

shadow opacity of 150, but feel free
to experiment with these values.
Obviously, the higher the opacity,
the darker will be the resulting
shadow area. You might even fancy
wrapping up the code into a reus-
able form class. One thing you
really shouldn’t change is the
colour, clBlack, which I’ve used for
the two shadow areas. I started off
using various shades of grey, but
found that although this looked
good most of the time, it looked
really unsavoury when ‘shadow-
ing’ certain coloured backgrounds.
I then tried clWhite, which looked
even worse. Eventually, I realised
that the whole thing about a
shadow is that it’s an absence of
light, hence black! Using clBlack
will give you a shadow that looks
great irrespective of the back-
ground it moves over. Seems obvi-
ous in retrospect, but it wasn’t at
the time. Duh! You’ll also find that
using this technique will give you
shadows with a much lower
runtime overhead than other tech-
niques because of the built-in
layering support in Windows 2000.

Window
Animation Techniques
Transparency and translucency
effects are all very nice, but they’re
sort of static, aren’t they? Wouldn’t
it be nice if Windows 2000 included
support for animating things? Well,
it does. The new platform includes
a ‘new’ API routine called Animate-
Window.

If you’re wondering why I put
those quotes around ‘new’, let’s
not forget that this operating

system has been in beta for several
years. The AnimateWindow routine
was first mentioned by Matt
Pietrek back in 1997, when he
announced that it would be
included in the upcoming NT 5.0
(which turned into Windows
2000). Since NT5/W2K went into
beta, Windows 98 has arrived and
it also includes support for this
call.

The presence of AnimateWindow
shouldn’t be too much of a sur-
prise because, as I’m sure you
know, Windows 2000 has those
magical menus which fade in and
out of reality. This is all done using
AnimateWindows, the function proto-
type for which (translated from
C/C++) is shown below:

function AnimateWindow(
Wnd: hWnd; dwTime, dwFlags:
DWord): Bool; stdcall;
external ‘user32.dll’;

The routine is pretty straightfor-
ward to use; the first parameter is
obviously a handle to the window
which we wish to animate. The
second parameter, dwTime, speci-
fies the time (in milliseconds)
during which an animation should
take place. Microsoft have
employed a de facto standard of
200 milliseconds for most of the
animation effects in Windows
2000, which I’d say is about right. If
you make the animation too long
then power users will get cheesed
off waiting, whereas if you make it
too short, nobody will notice the
effect, thus defeating the object of
the exercise. Two hundred

...
private
ShadowWidth: Integer;
RightShadow: TForm;
BotShadow: TForm;

...
procedure TForm1.FormCreate(Sender: TObject);
begin
ShadowWidth := 7;
RightShadow := TForm.Create (Self);
RightShadow.Parent := Application.MainForm;
RightShadow.BorderStyle := bsNone;
RightShadow.Width := ShadowWidth;
RightShadow.Color := clBlack;
RightShadow.Visible := True;
SetWindowLong (RightShadow.Handle, gwl_ExStyle,
GetWindowLong (RightShadow.Handle, gwl_ExStyle)
or ws_Ex_Layered);

SetLayeredWindowAttributes(RightShadow.Handle, 0, 150,
lwa_Alpha);

BotShadow := TForm.Create (Self);
BotShadow.Parent := Application.MainForm;
BotShadow.BorderStyle := bsNone;
BotShadow.Height := ShadowWidth;
BotShadow.Color := clBlack;

BotShadow.Visible := True;
SetWindowLong (BotShadow.Handle, gwl_ExStyle,
GetWindowLong (BotShadow.Handle, gwl_ExStyle)
or ws_Ex_Layered);

SetLayeredWindowAttributes(BotShadow.Handle, 0,
150, lwa_Alpha);

FormResize (Sender);
end;
procedure TForm1.WMWindowPosChanged(
var Message: TWMWindowPosChanged);

begin
Inherited;
if Assigned (RightShadow) and RightShadow.Visible then
FormResize(Nil);

end;
procedure TForm1.FormResize(Sender: TObject);
begin
RightShadow.Height := Height;
RightShadow.Left := Left + Width;
RightShadow.Top := Top + ShadowWidth;
BotShadow.Width := Width - ShadowWidth;
BotShadow.Left := Left + ShadowWidth;
BotShadow.Top := Top + Height;

end;

➤ Listing 5

May 2000 The Delphi Magazine 25

Value Description

AW_SLIDE Use slide animation. By default, roll animation is used. This flag is ignored when used
with AW_CENTER.

AW_ACTIVATE Activates the window. Do not use this value with AW_HIDE.

AW_BLEND Uses a fade effect. This flag can be used only if the window is a top-level window.

AW_HIDE Hides the window. By default, the window is shown.

AW_CENTER Make the window expand outwards when showing, or collapse inwards when hiding
(AW_HIDE).

AW_HOR_POSITIVE Animate window from left to right. This flag can be used with roll or slide animation.
It is ignored when used with AW_CENTER or AW_BLEND.

AW_HOR_NEGATIVE Animate window from right to left. This flag can be used with roll or slide animation.
It is ignored when used with AW_CENTER or AW_BLEND.

AW_VER_POSITIVE Animate window from top to bottom. This flag can be used with roll or slide animation.
It is ignored when used with AW_CENTER or AW_BLEND.

AW_VER_NEGATIVE Animate window from bottom to top. This flag can be used with roll or slide animation.
It is ignored when used with AW_CENTER or AW_BLEND.

milliseconds seems a good
compromise between the two.

The final, most important,
parameter is dwFlags. This speci-
fies the type of animation effect
that we want. Possible values for
dwFlags are shown in Table 1, and

you can see the actual definitions
for these constants in Listing 6.
Where it makes sense, some of
these values can be combined. For
example, if AW_HOR_POSITIVE is
combined with AW_VER_POSITIVE
then you can make the window
slide into view from its top-left
corner.

➤ Listing 6

➤ Table 1

// AnimateWindow flags
aw_Hor_Positive = $00000001;
aw_Hor_Negative = $00000002;
aw_Ver_Positive = $00000004;
aw_Ver_Negative = $00000008;
aw_Center = $00000010;
aw_Hide = $00010000;
aw_Activate = $00020000;
aw_Slide = $00040000;
aw_Blend = $00080000;

26 The Delphi Magazine Issue 57

It’s important to note that
AnimateWindow will only do the busi-
ness when you’re hiding or show-
ing a window. It won’t allow you to
(for example) smoothly slide an
existing, already visible, window
from one location to another. Even
so, it can be quite fun to play with.

If you’re wondering what’s the
difference between a ‘roll’ and a
‘slide’, here’s how it works. Let’s
take the case of a window appear-
ing on screen. If you were to do a
horizontal left to right slide, then
the window would first appear as a
thin vertical strip, expanding out to
the left. As the width of the window
increases, the window content
slides towards the right. On the
other hand, with a roll, the window
content doesn’t slide but is pro-
gressively revealed as the anima-
tion width increases. Think of a
slide as the morning mail being
shoved through the letterbox, and
a roll as being like an unrolling
carpet! See Listing 7.

As one would hope, the OnShow
event handler is the most natural
place to call AnimateWindow. This is
demonstrated by the code snippet
shown above. This will cause your
application window to fade onto
the screen. If you must, you can
also use the same technique to
fade out the application window
when it’s closed, see Listing 8.

I say ‘if you must’ because fading
out tends not to work as well as
fading in. Maybe Windows sends
repaint requests to the application
behind the disappearing window.
In any event, the effect isn’t as
smooth, although I’ve found that
you can partially compensate for
this by increasing the fade out time
to around 400 milliseconds as
shown here.

There are a couple of other
points to make here. Firstly, you
will have difficulty using this
technique if you have the form’s
Positionproperty set to something
other than poDesigned. The form
will fade in to view and then
suddenly snap to the required
screen location as defined by Posi-
tion! Needless to say, this doesn’t
look too great! If you look at the
code in FORMS.PAS, you will see
that this happens because the VCL

library calls the
OnShow handler
before actually
moving the window
to its designated
position. There are
probably ways
around this, but...

The second thing
you need to be aware
of is that well-
behaved Windows
2000 applications
need to take note of
the user’s prefer-
ences regarding animation effects.
You can get this information by
passing various new parameters to
the SystemParametersInfo API rou-
tine. The most important query
parameters are:

SPI_GetMenuAnimation = $1002;
SPI_GetMenuFade = $1012;

Firstly, you use the SPI_Get-
MenuAnimation parameter to deter-
mine whether or not animated
menus are enabled. If so, then you
can use the SPI_GetMenuFade
parameter to figure out whether
the user prefers sliding menus, or
menus that fade in and out. Strictly
speaking, these parameters apply
to menus, but the chances are that
if the user doesn’t want animated
menus, then he/she won’t appreci-
ate your animated application
windows either!

That said, there are some
circumstances where it is
acceptable to display animation
effects irrespective of the user’s
personal preferences. If you want
to give your application a fancy
About box, for example, then I
reckon it’s perfectly OK to pull out
all the stops in this particular case!
There are also situations where
animation might constitute an
integral part of your user interface,
such as those delightful sliding

drawers used by Kai’s Photo Soap
from MetaTools, Inc. The same
could be said of custom menu
implementations.

On the subject of pull-out draw-
ers and other similar effects, Win-
dows 2000 introduces a new API
call, UpdateLayeredWindow which
complements the functionality of
the aforementioned SetLayered-
WindowAttributes routine. This
routine allows you to specify
things such as window size and
position on the fly, together with a
device context handle which
represents the current drawing
surface of the window. Allegedly,
this routine allows you to create
effects that are even more power-
ful than those I’ve described so far,
but quite frankly the Microsoft
documentation is very poor and I
haven’t been able to find any
decent examples of how to use this
call in anger in my investigations
so far.

procedure TForm1.FormShow(Sender: TObject);
begin
AnimateWindow (Handle, 200, aw_Blend);

end;

procedure TForm1.FormClose(Sender: TObject; var Action: TCloseAction);
begin
AnimateWindow (Handle, 400, aw_Blend or aw_Hide);

end;

➤ Above: Listing 7 ➤ Below: Listing 8

➤ Figure 4: Notepad 'Classic
Edition' meets its see-through
sibling! Using the TRANSIT
utility (referred to in the
text) you can make any
Windows application exhibit
transparency/translucency
effects without changing
the executable in any way.
Clever, huh?

28 The Delphi Magazine Issue 57

Shrinker: Don’t Call Us,
We’ll Call You
As you are no doubt aware, the practice of compressing
executables has become very common in recent years. A com-
pressed file (be it an EXE file, a DLL, an OCX or whatever) works just
like an ordinary non-shrunk executable, but it is substantially
smaller and more difficult for hackers to disassemble and patch. For
both of these reasons, many people now routinely use Shrinker,
ASPack, Fusion and a variety of other EXE compression tools. Allaire
HomeSite and TurboPower’s Sleuth QA Suite (both written in
Delphi, interestingly enough) are just a couple of examples of prod-
ucts which have been protected from prying eyes through the use
of EXE compressor technology.

Some time ago, I used Delphi to write a reader survey program
for another computer magazine and I was surprised to receive a
bug report to the effect that a small number of end users couldn’t
even start the provided EXE file. After some investigation, I discov-
ered that this was due to an operating system incompatibility with
the EXE compressor I was using, Shrinker from Blink Inc (whose
website is at www.blinkinc.com). All compressed EXE files have a
small stub loader, a chunk of code which is called by the operating
system and is responsible for decompressing the rest of the file into
memory. It turned out that Shrinker’s stub loader was blowing up
under some circumstances. I provided an uncompressed version of
my survey program to the magazine in question, and the problem
did not recur...

...Until, that is, I upgraded my main development system to Win-
dows 2000. I have a small desktop utility, Paddy, which I wrote for
my own use. It helps to organize my work and remember what I’m
supposed to be doing from one day to the next. Think of it as a sort
of memo-pad application. This little utility worked fine until it
came across Windows 2000, at which point I got the result shown in
Figure 5. Let me stress that this isn’t the fault of Windows 2000. No,
it’s good old Shrinker screwing up again. It turns out that I’d used
Shrinker to compress Paddy and, yes, you’ve guessed, the Shrinker
3.2 loader doesn’t like Windows 2000. Yes, I know Blink Inc are now
up to version 3.4, but so what. This isn’t the first time I’ve been
bitten in the backside by Shrinker but it’ll certainly be the last. If
you’ve been using Shrinker to compress your deployed
executables,
then I’d sug-
gest that you
just might
want to look
elsewhere for a
solution that
will be more
robust [And of
course we’d
love to hear
from Blink Inc
with their com-
ments... Ed].

➤ Figure 5: The less said about certain EXE
compressors, the better. Sadly, many
out-in-the-field applications which have been
compressed using quite recent versions of
Shrinker won't run under Windows 2000,
through no fault of the new platform itself.

Next Month
Be that as it may, I hope to dig up
some more information for next
month’s column, when I’ll be
continuing this discussion of the
enhanced visual effects that are
possible under Windows 2000. I’ll
be looking at some other API rou-
tines, and we’ll be concentrating
on how to use all these goodies to
enhance existing Delphi controls,
this is where the fun really starts!

In the meantime, if you point
your browser at http://gallery.
uunet.be/lucvdveken, you’ll find
an interesting little command-line
utility called TRANSIT (go to the
Windows 2000 download area and
grab the file called TRANSIT.ZIP)
which allows you to add translu-
cency and transparency effects to
any existing application at start-up
time. See Figure 4 for an... umm...
interesting example of what can be
done.

If you look at the two sample pro-
jects included on this month’s
disk, you’ll see that I’ve had to add
the necessary API call declara-
tions, constant values, etc, into the
program source code as for exam-
ple in Listings 1 and 4. This is
because the necessary Windows
2000 declarations haven’t yet
made it into Borland’s RTL units
such as WINDOWS.PAS. Surpris-
ingly, even the recently released
Delphi 5 Update CD (obtainable for
the princely sum of a tenner from
Borland UK HQ) doesn’t remedy
this situation. You will, however,
find the necessary SDK declara-
tions in the header files accompa-
nying C++Builder 5, but of course,
they have to be translated into the
equivalent Delphi syntax. Delphi 5
does include the declaration for
the aforementioned AnimateWindow
routine, but so it should for a call
that’s been documented since
1997!

Dave Jewell is a freelance consul-
tant/programmer and technical
journalist specialising in system-
level Windows and DOS work. He
is Technical Editor of Developers
Review which is also published by
iTec. You can contact Dave at
TechEditor@itecuk.com

	Paradise Regained
	Translucent Application Windows
	And Transparent Windows Too!
	Standing Out From The Crowd
	Window Animation Techniques
	Shrinker: Don’t Call Us, We'll Call You
	Next Month

